Water Impact of Syntactic Foams
نویسندگان
چکیده
Syntactic foams are particulate composite materials that are extensively integrated in naval and aerospace structures as core materials for sandwich panels. While several studies have demonstrated the potential of syntactic foams as energy absorbing materials in impact tests, our understanding of their response to water impact remains elusive. In this work, we attempt a first characterization of the behavior of a vinyl ester/glass syntactic subject to slamming. High-speed imaging is leveraged to elucidate the physics of water impact of syntactic foam wedges in a free-fall drop tower. From the images, we simultaneously measure the deformation of the wedge and the hydrodynamic loading, thereby clarifying the central role of fluid-structure interaction during water impact. We study two different impact heights and microballoon density to assess the role of impact energy and syntactic foam composition on the slamming response. Our results demonstrate that both these factors have a critical role on the slamming response of syntactic foams. Reducing the density of microballoons might help to reduce the severity of the hydrodynamic loading experienced by the wedge, but this comes at the expense of a larger deformation. Such a larger deformation could ultimately lead to failure for large drop heights. These experimental results offer compelling evidence for the role of hydroelastic coupling in the slamming response of syntactic foams.
منابع مشابه
Compression and low-velocity impact behavior of aluminum syntactic foam
We report quasi-static compression and impact behavior of aluminum syntactic foams (ASF) produced by melt infiltration. Aluminum syntactic foams with relative density of 0.46 were produced using hollow alumina spheres (4.45 mm and 3.05 mm) randomly situated in a mold and two types of aluminum alloy (1100 and 6061). The impact behavior was investigated using an instrumented drop tower. We invest...
متن کاملThermal Characterization of Plain and Carbon Nanotube reinforced Syntactic Foams
Composite materials fabricated using hollow microspheres are called syntactic foams. Particulate filler composites such as syntactic foams, consisting of glass microballoons and epoxy resin, are desirable for applications that require high compressive and impact strengths and low thermal conductivities. However, for heat dissipation applications, filler additions are required to increase the th...
متن کاملA Review of Thermal Conductivity of Polymer Matrix Syntactic Foams—Effect of Hollow Particle Wall Thickness and Volume Fraction
Hollow-particle-filled composites called syntactic foams are lightweight particulate composites that are useful in weight-sensitive applications such as aerospace and marine structures. Extensive literature is now available on the mechanical properties of syntactic foams. The upcoming applications for syntactic foams in aerospace structures require understanding of their thermal properties, suc...
متن کاملSynthesis of syntactic steel foam using gravity-fed infiltration
In this study, we report a procedure for producing syntactic steel foams by melt infiltration of millimeter-sized ceramic microspheres. The gravity-fed infiltration method yields steel foam with uniform distributions of microspheres and negligible unintended porosity. The critical parameters in the manufacturing process are the melt temperature and the preheat temperature of the microspheres pr...
متن کاملApplications of Polymer Matrix Syntactic Foams
A collection of applications of polymer matrix syntactic foams is presented in this article. Syntactic foams are lightweight porous composites that found their early applications in marine structures due to their naturally buoyant behavior and low moisture absorption. Their light weight has been beneficial in weight sensitive aerospace structures. Syntactic foams have pushed the performance bou...
متن کامل